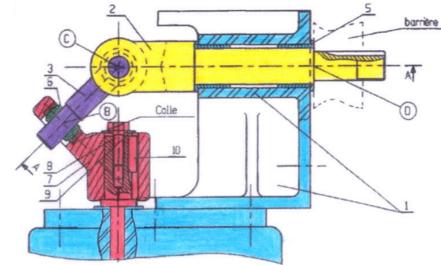
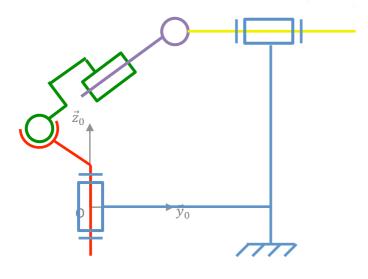
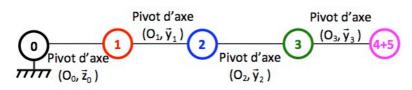
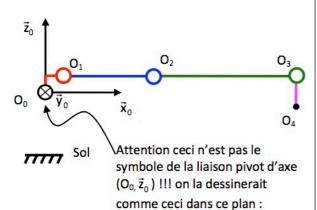


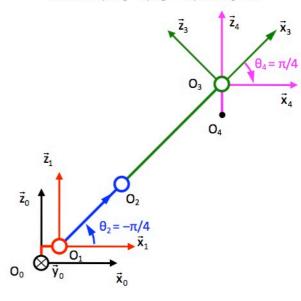
Représenter et Caractériser les Mouvements

Travaux Dirigés n°5 : CORRIGÉ

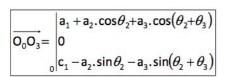





Schéma cinématique 2D dans le plan $(0, \vec{y}_0, \vec{z}_0)$ pour $\vec{x}_0 = \vec{x}_4$:

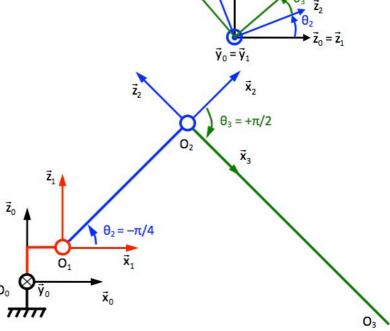
Q.1.



Q.2. Position $P_h : \theta_1 = 0, \theta_2 = 0 \text{ et } \theta_3 = 0.$


O₀

Position P_v : $\theta_1 = 0$, $\theta_2 = -\pi/4$ et $\theta_3 = 0$.

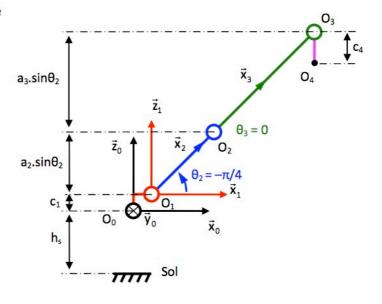

Sol

Q.3. Pour la position P_i , on a $\theta_1 = 0$, $\theta_2 = -\pi/4$, $\theta_3 = \pi/2$.

A.N.:
$$\overrightarrow{O_0O_3} = \begin{vmatrix} 0.1 + \frac{\sqrt{2}}{2}.(0.5 + 0.8) \\ 0 \\ 0.1 + \frac{\sqrt{2}}{2}.(0.5 - 0.8) \end{vmatrix}$$

 $\Rightarrow \boxed{\overrightarrow{O_0O_3} = 1,02.\vec{x}_0 - 0,11.\vec{z}_0}$

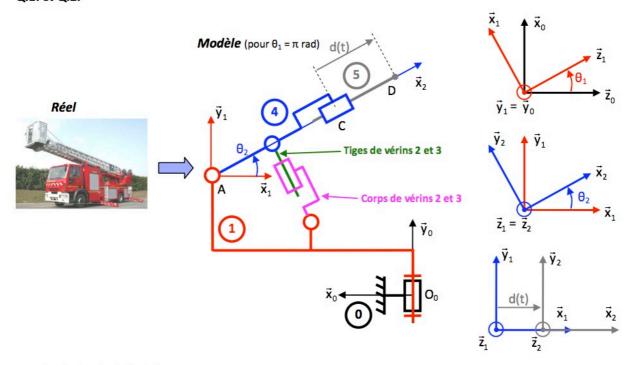
Q.4. Calcul de la hauteur maximale d'étude de la roche par rapport au sol.


On a :
$$-\pi/2 \le \theta_1 \le \pi/2$$

 $-\pi/4 \le \theta_2 \le \pi/4$
 $0 \le \theta_3 \le \pi$

et O_3O_4 doit être vertical tel que $(\vec{z}_0, \vec{z}_4) = 0$.

$$h_{maxi} = h_s + c_1 + (a_2 + a_3).sin\theta_2 - c_4$$


A.N.:

$$h_{\text{maxi}} = 0.5 + 0.1 + \frac{\sqrt{2}}{2}.(0.5 + 0.8) - 0.15$$

 $\boxed{h_{\text{maxi}} = 1.37 \text{ m}} \rightarrow \text{C.d.C.F. ok.}$

Exercice 4: Echelle Pivotante Automatique

Q.1. et Q.2.

Q.3.
$$\overrightarrow{O_0D} = \overrightarrow{O_0A} + \overrightarrow{AC} + \overrightarrow{CD} = -b.\overrightarrow{x}_1 + a.\overrightarrow{y}_1 + c.\overrightarrow{x}_2 + d(t).\overrightarrow{x}_2 \text{ avec}:$$

 $\overrightarrow{x}_1 = -\sin\theta_1.\overrightarrow{z}_0 + \cos\theta_1.\overrightarrow{x}_0$

$$\vec{\mathbf{v}}_1 = \vec{\mathbf{v}}_0$$

$$\vec{x}_2 = \cos \theta_2 \cdot \vec{x}_1 + \sin \theta_2 \cdot \vec{y}_1$$

$$\rightarrow \overrightarrow{O_0D} = -b.(-\sin\theta_1.\vec{z}_0 + \cos\theta_1.\vec{x}_0) + a.\vec{y}_0 + (c+d(t)).(\cos\theta_2.\vec{x}_1 + \sin\theta_2.\vec{y}_1) = \begin{vmatrix} b.\cos\theta_1 + (c+d(t)).\cos\theta_2.\cos\theta_1 \\ a + (c+d(t)).\sin\theta_2 \end{vmatrix}$$

$$b.\sin\theta_1 - (c+d(t)).\cos\theta_2.\sin\theta_1$$