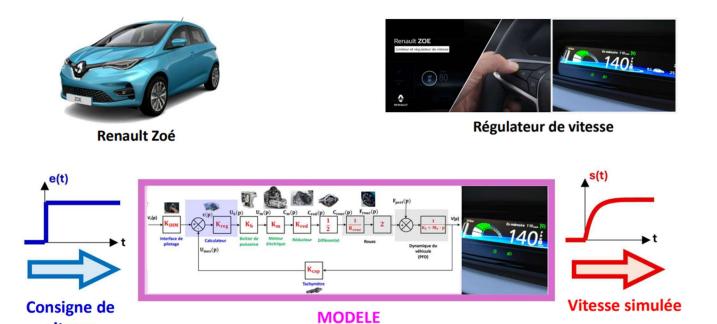


Modéliser les Systèmes

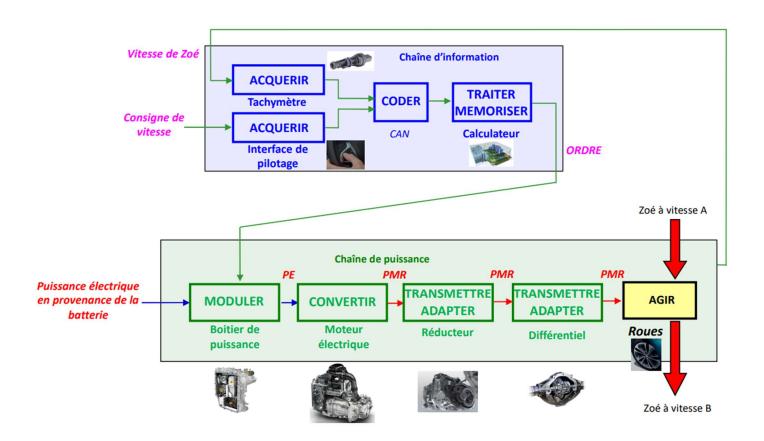
Travaux Dirigés n°3 : <mark>CORRIGÉ</mark> Transformée de Laplace / Schémas-blocs / Fonction de transfert

Exercice 1: Régulateur de vitesse de la Renault ZOÉ



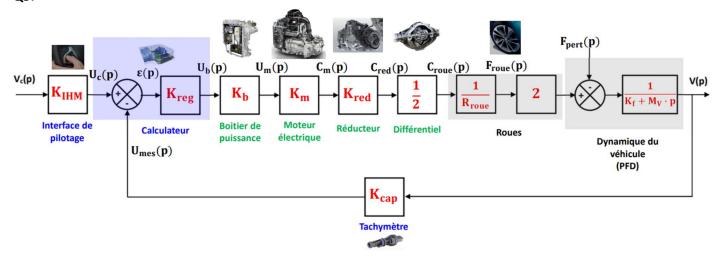
Q1. Q2.

vitesse

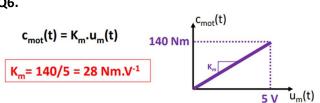


Relation temporelle	Relation(s) dans le domaine de Laplace	Schéma-bloc élémentaire correspondant
Boitier de puissance : $u_m(t) = K_b.u_b(t)$	$\mathbf{U}_{\mathbf{m}}(\mathbf{p}) = \mathbf{K}_{\mathbf{b}} \cdot \mathbf{U}_{\mathbf{b}}(\mathbf{p})$	U _b (p)
Moteur électrique : $c_{mot}(t) = K_m.u_m(t)$	$C_{mot}(p) = K_m \cdot U_m(p)$	$V_m(p)$ K_m $C_{mot}(p)$
Réducteur : $c_{red}(t) = K_{red}.c_{mot}(t)$	$C_{red}(p) = K_{red} \cdot C_{mot}(p)$	K_{red} $C_{red}(p)$
Différentiel: $c_{roue}(t) = \frac{1}{2}.c_{red}(t)$	$C_{\text{roue}}(\mathbf{p}) = \frac{1}{2} \cdot C_{\text{red}}(\mathbf{p})$	$\frac{1}{2} \qquad \frac{C_{\text{roue}}(p)}{2}$
Roue: $f_{roue}(t) = \frac{1}{R_{roue}}.c_{roue}(t)$	$F_{\text{roue}}(p) = \frac{1}{R_{\text{roue}}} \cdot C_{\text{roue}}(p)$	C _{roue} (p) R _{roue} F _{roue} (p)
Market M	$ \begin{split} & \blacksquare \ M_V \cdot p \cdot V(p) \\ &= 2F_{roue}(p) - F_f(p) - F_{pert}(p) \\ & \blacksquare \ F_f(p) = K_f \cdot V(p) \\ & M_V \cdot p \cdot V(p) \\ &= 2F_{roue}(p) - K_f \cdot V(p) - F_{pert}(p) \\ & 2F_{roue}(p) - F_{pert}(p) = \\ & (K_f + M_V \cdot p) \cdot V(p) \end{split} $	Froue(p) 2 $V(p)$ $K_f + M_V \cdot p$
Interface de pilotage : $ \text{Gain pur K}_{\text{IHM}} $ $ \boxed{ u_c(t) = K_{IHM} \cdot v_c(t) } $	$\mathbf{U}_{\mathbf{c}}(\mathbf{p}) = \mathbf{K}_{\mathbf{IHM}} \cdot \mathbf{V}_{\mathbf{c}}(\mathbf{p})$	$V_{c(p)} \longrightarrow K_{IHM} \xrightarrow{U_{c(p)}}$
Prise tachymétrique : $ \text{Gain pur K}_{\text{cap}} $ $ \boxed{ u_{mes}(t) = K_{cap} \cdot v \left(t \right) } $	$U_{mes}(p) = K_{cap} \cdot V(p)$	$V(p) \longrightarrow \mathbf{K_{cap}} \xrightarrow{U_{mes}(p)}$
Calculateur : $\epsilon(t) = u_c(t) - u_{mes}(t)$ $u_b(t) = K_{reg}.\epsilon(t)$	$\epsilon(\mathbf{p}) = \mathbf{U}_{\mathbf{c}}(\mathbf{p}) - \mathbf{U}_{\mathbf{mes}}(\mathbf{p})$ $\mathbf{U}_{\mathbf{b}}(\mathbf{p}) = \mathbf{K}_{\mathbf{reg}} \cdot \epsilon(\mathbf{p})$	$ \begin{array}{c c} U_c(p) & & & \\ \downarrow & & & \\ U_{mes}(p) & & & \\ \end{array} $ $ \begin{array}{c c} K_{reg} & & \\ \end{array} $

Q5.



Q6.



Q7.

L'écart doit être nul quand $v(t) = v_c(t)$

Or
$$\varepsilon(t) = u_c(t) - u_{mes}(t) = K_{IHM} . v_c(t) - K_{cap}. v(t)$$

Q8. Q9

$$V(p) = H_1(p) \cdot V_c(p) + H_2(p) \cdot F_{pert}(p)$$

$$\text{avec} \quad H_1(p) = \frac{K_{cap}K^*}{R_{roue}K_f + K^*K_{cap} + R_{roue}M_v \cdot p} \\ H_2(p) = -\frac{R_{roue}}{R_{roue}K_f + K^*K_{cap} + R_{roue}M_v \cdot p}$$

$$\qquad \qquad \text{FORME CANONIQUE}$$

$$H_2(p) = -\frac{R_{roue}}{R_{roue}K_f + K^*K_{cap} + R_{roue}M_v \cdot p} \cdot \frac{1}{1 + \frac{R_{roue}M_v}{R_{roue}K_f + K^*K_{cap}} \cdot p}$$

Q10.

$$V(p) = \frac{K_1}{1 + \tau \cdot p} \cdot V_c(p) \qquad \text{car } F_{pert}(p) = 0 \\ \qquad \qquad \Rightarrow \ v(+\infty) = K_1 V_0$$

Consigne de vitesse en échelon : $V_c(p) = \frac{v_0}{p}$

$$V(p) = \frac{K_1}{1 + \tau \cdot p} \cdot \frac{V_0}{p}$$

$$\lim_{t \to +\infty} v(t) = \lim_{p \to 0} p \cdot V(p) = \lim_{p \to 0} p \cdot \frac{K_1}{1 + \tau \cdot p} \cdot \frac{V_0}{p} = K_1 V_0$$

Q11.

$$\begin{split} V(p) &= \frac{K_1}{1 + \tau \cdot p} \cdot V_c(p) - \frac{K_2}{1 + \tau \cdot p} \cdot F_{pert}(p) \\ \Delta V(p) &= -\frac{K_2}{1 + \tau \cdot p} \cdot F_{pert}(p) &\Rightarrow \Delta v(+\infty) = -K_2 F_0 \\ \Delta V(p) &= -\frac{K_2}{1 + \tau \cdot p} \cdot \frac{F_{pert}(p)}{p} &\text{Perturbation constante (échelon) : } F_{pert}(p) = \frac{F_0}{p} \\ \Delta V(p) &= -\frac{K_2}{1 + \tau \cdot p} \cdot \frac{F_0}{p} &\lim_{t \to +\infty} \Delta v(t) = \lim_{p \to 0} p \cdot \Delta V(p) = \lim_{p \to 0} p \cdot \frac{-K_2}{1 + \tau \cdot p} \cdot \frac{F_0}{p} = -K_2 F_0 \end{split}$$

Q12.

$$v(+\infty) \neq V_0$$
 et $\Delta v(+\infty) \neq 0$ => CDC KO!

Q13.

$$U_m(p) = \frac{1}{p} \left(K_{reg} \mathcal{E}(p) \right) \frac{2^{-1}}{(leaviside)} u_m(t) = K_{reg} \int_0^t \mathcal{E}(t) dt$$

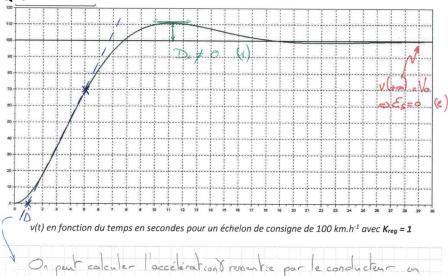
D'où l'appellation correcteur intégral

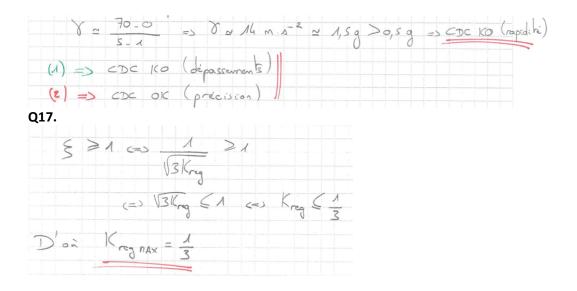
NB: Integrer donn le domaine tempore "revient" à diviser par p donns le domaine symbolique.

Q14.	
A aide de l'expression de H(p) donnée et en modifiant Krey es	ry ona:
S Arog	
10+3 (reg + 25p 10p+3 (reg + 25p2	
1/2(p) =	
1+ 10 P+ 25 P2 3 Krey P 3 Krey	
On a done, par identification	
(K3 = 1 (gain statique som mite)	
25 - 10 (1) 25 - 3Kng	
	tron grope
En remplaçant Wo par son expression dans (1) on obtion?	
5 1 10 V3Kreg 2 3 Kreg 5	
Soit: $\xi = \frac{1}{\sqrt{3 \text{Krey}}}$ (amortissement sons unité)	
- V3Krej	

Q15.

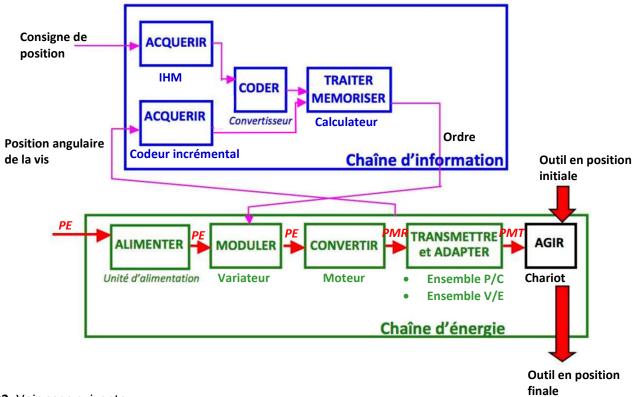
Q16.





Exercice 2 : Axe linéaire d'une machine-outil

Q1.



Q2.Q3. Voir page suivante

Q4. La position angulaire de la vis $\theta_v(t)$ est l'intégrale de sa vitesse angulaire $\omega_v(t)$. Or intégrer dans le domaine temporel revient à diviser par p dans le domaine symbolique => la fonction de transfert permettant de passer de $\Omega_v(p)$ à $\Theta_v(p)$ est donc 1/p

Q5.

Afin que le système soit correctement asservi, il faut $\epsilon(t) = 0$ quand $x(t) = x_c(t)$. Or $\epsilon(t) = u_c(t) - u_{mes}(t) = K_{IHM}.x_c(t) - K_{cap}.\theta_v(t) = K_{IHM}.x_c(t) - K_{cap}/K_{VE}.x(t) =$ => $K_{IHM} = K_{cap}/K_{VE}$

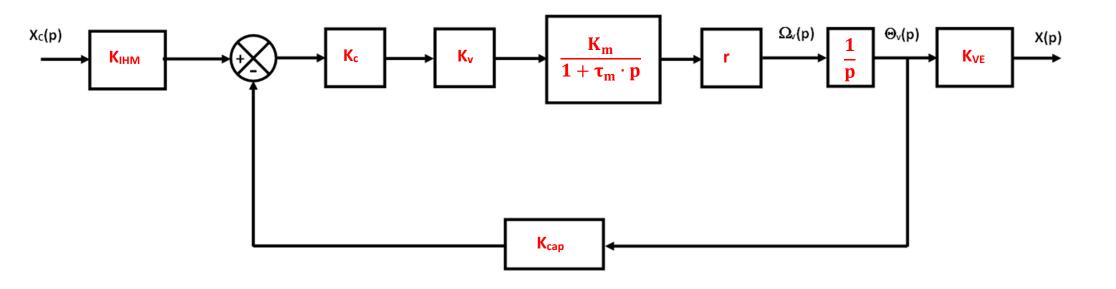


Schéma-blocs de l'axe linéaire complet

Exercice 3: Régulation de niveau

Question 1 : Appliquer, pour chacun des modèles de connaissance des constituants du système, la transformation de Laplace. Puis indiquer sa fonction de transfert, et enfin en déduire son schéma-bloc.

Composant	Relation temporelle	Relation dans le domaine de Laplace	Schéma-bloc
Moteur	$\tau \cdot \frac{d\omega_{m}(t)}{dt} + \omega_{m}(t) = K_{m} \cdot u_{m}(t)$	$\tau.p.\Omega_{m}(p) + \Omega_{m}(p) = K_{m}.U_{m}(p)$ $\Omega_{m}(p).(1+\tau.p) = K_{m}.U_{m}(p)$ $\frac{\Omega_{m}(p)}{U_{m}(p)} = \frac{K_{m}}{1+\tau.p}$	$U_{m}(p) \xrightarrow{K_{m}} \Omega_{m}(p)$
Réducteur	$\theta_{v}(t) = r.\theta_{m}(t)$	$\frac{\Theta_{v}(p) = r.\Theta_{m}(p)}{\frac{\Theta_{v}(p)}{\Theta_{m}(p)} = r}$	$\Theta_{m}(p)$ Γ $\Theta_{v}(p)$
Vanne	$q_e(t) = K_v.\theta_v(t)$	$Q_{e}(p) = K_{v}.\Theta_{v}(p)$ $\frac{Q_{e}(p)}{\Theta_{v}(p)} = K_{v}$	$\Theta_{V}(p)$ K_{V} $Q_{e}(p)$
Réservoir	$q_e(t) - q_s(t) = S.\frac{dh(t)}{dt}$	$Q_{e}(p) - Q_{s}(p) = S.p.H(p)$ $\frac{H(p)}{Q_{e}(p) - Q_{s}(p)} = \frac{1}{S.p}$	$ \begin{array}{c} Q_{e}(p) \\ \downarrow Q_{s}(p) \end{array} $
Limnimètre (capteur)	$u_{mes}(t) = a.h(t)$	$U_{\text{mes}}(p) = a.H(p)$ $\frac{U_{\text{mes}}(p)}{H(p)} = a$	H(p) a U _{mes} (p)
Régulateur (comparateur + correcteur)	$\varepsilon(t) = u_{c}(t) - u_{mes}(t)$ $u_{m}(t) = A.\varepsilon(t)$	$\frac{U_{m}(p)}{A} = U_{c}(p) - U_{mes}(p)$ $\frac{U_{m}(p)}{U_{c}(p) - U_{mes}(p)} = A$	$U_{c}(p)$ $\downarrow U_{mes}(p)$ A $U_{m}(p)$

Le modèle de connaissance du potentiomètre (transducteur) n'est jamais donné dans les sujets de concours, il faut donc le retrouver !

Question 2 : Donner cette relation entre h_c(t) et u_c(t) qui assure que ε(t) soit bien une image de l'erreur du niveau d'eau. En déduire le schéma-bloc correspondant au potentiomètre.

Lorsque la réponse du système est égale à la consigne, il faut e(p) = 0 afin de cesser la commande de la chaîne d'énergie.

Or $\varepsilon(p) = U_c(p) - U_{mes}(p) = H_{potentio}(p)$. H_c(p) - a.H(p). Lorsque H(p) = H_c(p), il faut donc $H_{potentio}(p) = a$, soit un gain pur.

Composant	Relation temporelle	Relation dans le domaine de Laplace	Schéma-bloc
Potentiomètre (transducteur)	$u_c(t) = a.h_c(t)$	$U_{c}(p) = a.H_{c}(p)$ $\frac{U_{c}(p)}{H_{c}(p)} = a$	H _c (p) a U _c (p)

La relation entre vitesse angulaire $\omega_m(t)$ et position angulaire $\theta_m(t)$ du moteur, n'est aussi jamais donnée dans les sujets de concours, il faut donc la connaître.

Question 3 : Donner donc cette relation temporelle générale qui lie vitesse et position. En déduire le schéma-bloc qui passe de $\Omega_{\rm m}({\rm p})$ à $\Theta_{\rm m}({\rm p})$

La vitesse instantanée linéaire est la dérivée de la position linéaire : $v(t) = \frac{dv(t)}{dt}$.

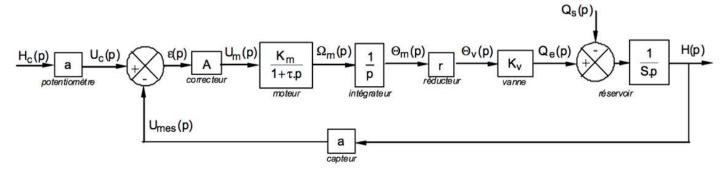
De même, la vitesse instantanée angulaire est la dérivée de la position angulaire : $\omega_m(t) = \frac{d\theta_m(t)}{dt}$.

Composant	Relation temporelle	Relation dans le domaine de Laplace	Schéma-bloc
Intégrateur (composant "virtuel")	$\omega_m(t) = \frac{d\theta_m(t)}{dt}$	$ \Omega_{m}(p) = p.\Theta_{m}(p) \frac{\Theta_{m}(p)}{\Omega_{m}(p)} = \frac{1}{p} $	$\frac{\Omega_{m}(p)}{p} \qquad \frac{1}{p} \qquad \stackrel{\Theta_{m}(p)}{\longrightarrow}$

Ce bloc est appelé intégrateur car la vitesse angulaire est intégrée en position angulaire...

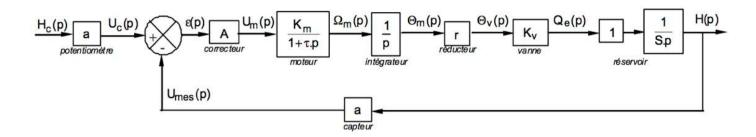
Question 4 : Donner la variable d'entrée et la variable de sortie du système. Puis, représenter le schémabloc du système entier en précisant le nom des constituants sous les blocs, ainsi que les flux d'énergie ou d'information entre les blocs.

Variable d'entrée (consigne) : h_c(t) Variable de sortie à asservir : h(t)



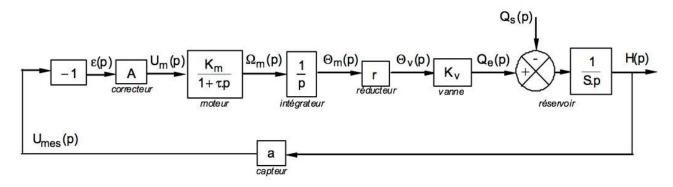
Question 5 : Déterminer les fonctions de transfert
$$F_1(p) = \frac{H(p)}{H_c(p)}\Big|_{Q_s(p)=0}$$
 et $F_2(p) = \frac{H(p)}{Q_s(p)}\Big|_{H_c(p)=0}$.

Si Q_s(p) = 0 alors le schéma est similaire à :



Ainsi si $Q_s(p) = 0$ alors $H(p) = F_1(p).H_c(p)$

Si $H_c(p) = 0$ alors le schéma est similaire à :



Donc
$$F_2(p) = \frac{H(p)}{Q_s(p)}\Big|_{H_c(p)=0} = \frac{-\frac{1}{S.p}}{1 - a.(-1).A.\frac{K_m}{1 + \tau.p}.\frac{1}{p}.r.K_v.\frac{1}{S.p}}$$

$$F_2(p) = \frac{H(p)}{Q_s(p)}\Big|_{H_{r}(p)=0} = \frac{-(1+\tau p).p}{(1+\tau p).p.S.p + a.A.K_m.r.K_v}$$

On multiplie le numérateur et le dénominateur, par le dénominateur du dénominateur...

$$F_2(p) = \frac{H(p)}{Q_s(p)}\bigg|_{H_c(p)=0} = \frac{-p - \tau . p^2}{s.p^2 + \tau . s.p^3 + a.A.K_m.r.K_v}$$

$$F_2(p) = \frac{H(p)}{Q_s(p)}\bigg|_{H_c(p) = 0} = \frac{-p}{a.A.K_m.r.K_v} \cdot \frac{1 + \frac{-\tau.p^2}{-p}}{1 + \frac{S}{a.A.K_m.r.K_v}.p^2 + \frac{\tau.S}{a.A.K_m.r.K_v}.p^3}$$

$$F_{2}(p) = \frac{H(p)}{Q_{s}(p)}\Big|_{H_{c}(p)=0} = \frac{-p}{a.A.K_{m}.r.K_{v}} \cdot \frac{a.A.K_{m}.r.K_{v}}{1+\tau.p} \cdot \frac{1+\tau.p}{1+\frac{S}{a.A.K_{m}.r.K_{v}}.p^{2} + \frac{\tau.S}{a.A.K_{m}.r.K_{v}}.p^{3}}$$

Ainsi si $H_c(p) = 0$ alors $H(p) = F_2(p).Q_s(p)$

Question 6: En déduire, à l'aide du théorème de superposition, l'expression de $H(p) = f[H_c(p) + Q_s(p)]$.

Si les 2 entrées sont présentes en même temps, le théorème de superposition nous donne :

$$H(p) = F_1(p).H_c(p) + F_2(p).Q_s(p)$$

Interprétation de $F_1(p)$:

Lorsque la consigne de hauteur $h_c(t)$ est un échelon d'amplitude H_0 : $h_c(t) = H_0$ pout t > 0.

On peut donc exprimer:

$$H_{c}(\mathbf{p}) = \frac{H_{0}}{\mathbf{p}}$$

D'où:

$$H(p) = F_1(p) \cdot H_c(p) = \frac{1}{1 + \frac{S}{aAK_mrK_v} \cdot p^2 + \frac{\tau S}{aAK_mrK_v} \cdot p^3} \cdot \frac{H_0}{p}$$

Le théorème de la valeur finale permet donc d'exprimer la hauteur atteinte en régime permanent :

$$h(+\infty) = \lim_{p \to 0} p \cdot H(p) = \lim_{p \to 0} p \cdot \frac{1}{1 + \frac{S}{aAK_m r K_v} \cdot p^2 + \frac{\tau S}{aAK_m r K_v} \cdot p^3} \cdot \frac{H_0}{p} = H_0$$

Ou encore l'erreur statique :

$$\varepsilon_{\rm s} = h_{\rm c}(+\infty) - h(+\infty) = H_0 - H_0 = 0$$

Conclusion:

Le système est on ne peut plus précis pour une consigne en échelon.

Interprétation de $F_2(p)$:

Lorsque la perturbation $q_s(t)$ est un échelon d'amplitude $Q_0: q_s(t) = Q_0$ pout t > 0.

On peut donc exprimer :

$$\mathbf{Q}_{\mathbf{S}}(\mathbf{p}) = \frac{\mathbf{Q}_{\mathbf{0}}}{\mathbf{p}}$$

D'où:

$$\Delta H(p) = F_2(p) \cdot Q_s(p) = -\frac{p}{aAK_m rK_v} \cdot \frac{1 + \tau \cdot p}{1 + \frac{S}{aAK_m rK_v} \cdot p^2 + \frac{\tau S}{aAK_m rK_v} \cdot p^3} \cdot \frac{Q_0}{p}$$

Le **théorème de la valeur finale** permet donc d'exprimer la variation de hauteur atteinte en régime permanent :

$$\Delta h(+\infty) = \lim_{p \to 0} p \cdot \Delta H(p) = \lim_{p \to 0} p \cdot \frac{-p}{aAK_m r K_v} \cdot \frac{1 + \tau \cdot p}{1 + \frac{S}{aAK_m r K_v} \cdot p^2 + \frac{\tau S}{aAK_m r K_v} \cdot p^3} \cdot \frac{Q_0}{p} = 0$$

Conclusion:

Le système est on ne peut plus précis pour une perturbation en échelon, c'est-à-dire, l'effet d'une perturbation en échelon est nul en régime permanent.