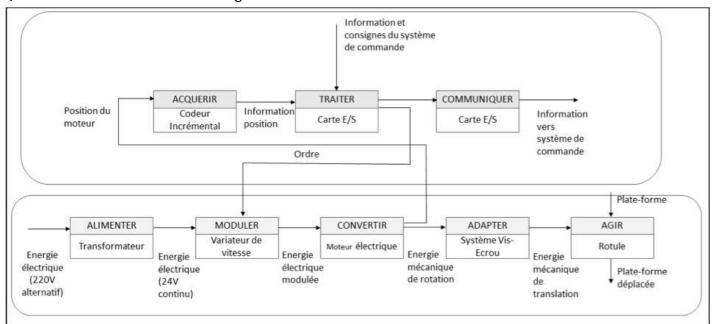
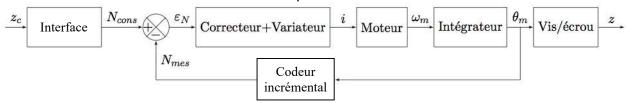
CORRIGÉ

Q1. Chaînes d'information et d'énergie du vérin :



Q2. Schéma-bloc fonctionnel de l'asservissement en position du vérin :



<u>Remarque</u>: l'intégrateur n'est pas un composant physique. Il apparaît sur le schéma bloc fonctionnel pour assurrer que la grandeur mesurée par le capteur soit l'angle θ_m .

Q3. Transformée de Laplace du modèle de connaissance du vérin :

$$\left[J_{eq}\cdot p+f_v\right]\Omega_m(p)=C_m(p)+C_r(p)$$

Q4. Fonction de transfert H₁(p) et caractéristiques :

On a donc
$$H_1(p)=\frac{1}{J_{eq}\,p+f_v}$$
 soit, sous forme canonique $H_1(p)=\frac{\frac{1}{f_v}}{1+\frac{J_{eq}}{f_v}p}$. Soit une fonction de tranfert **d'ordre 1**, un gain $K_v=\frac{1}{f_v}$ et une constante de temps $\tau_v=\frac{J_{eq}}{f_v}$.

Q5. Relation temporelle entre $\omega_m(t)$ et $\theta_m(t)$. Expression de $H_2(p)$:

La vitesse est la dérivée de la position, on a donc $\left[\omega_m(t) = \frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t}\right]$ soit, dans le domaine de Laplace, $p\,\theta_m(p) = \Omega_m(p)$, d'où $H_2(p) = \frac{1}{p}$.

Q6. Expression de $\omega_m(t)$ en fonction de i(t) et de $C_r(t)$ en régime permanent :

En régime permanent, $\frac{\mathrm{d}\omega_m(t)}{\mathrm{d}t}=0$. On obtient donc $f_v\,\omega_m(t)=K_T\,i(t)+C_r(t)$

Q7. Valeurs de C_r et de f_v:

Dans le cas où C_r est **supposé constant**, on a, de la question précédente, $\boxed{\omega_m(t) = \frac{K_T}{f_v} i(t) + \frac{C_r}{f_v}}$. Le coefficient $\frac{K_T}{f_v}$ correspond à la pente de la droite approximée soit donc $\frac{K_T}{f_v} \approx \frac{120-20}{3,5-1,5} = 50$ et comme $K_T = -0.69\,\mathrm{N}\cdot\mathrm{m}\cdot\mathrm{s}^{-1}$, on en déduit $\boxed{f_v = 0.014\,\mathrm{N}\cdot\mathrm{m}\cdot\mathrm{s}}$. La valeur particulière $\omega_m = 0$ permet d'avoir $i = 1\,\mathrm{A}$, et donc $C_r = -K_T = -0.69\,\mathrm{N}\cdot\mathrm{m}$ soit $\boxed{C_r - 0.7\,\mathrm{N}\cdot\mathrm{m}}$.

Q8. Gain K_{VE} du dispositif Vis/Ecrou

Le pas de la vis est de 3 mm, soit une avance de 3 mm de l'écrou pour 1 tour de la vis.

$$K_{VE} = rac{3.10^{-3}}{2\pi} pprox 4.8 imes 10^{-4} \, ext{m/rad} \, .$$

Q9. Gain K_{cap} du codeur incrémental en points/radian :

256 fentes par tour par voie, soit $2 \times 2 \times 256$ informations par tour. $K_{cap} = \frac{1024}{2\pi} \approx 163 \,\mathrm{pt/rad}$

Q10. Gain K_A pour que le système soit correctement asservi :

Le système est bien asservi si l'écart ε_{cons} est nul pour une sortie z égale à la consigne z_c . Soit donc

$$K_A z_c - rac{K_{cap}}{K_{VE}} z = 0$$
. On a donc $K_A = rac{K_{cap}}{K_{VE}} pprox 341\,333\,\mathrm{pt/m}$.

Q11. Expression de H_p(p) et ses caractéristiques :

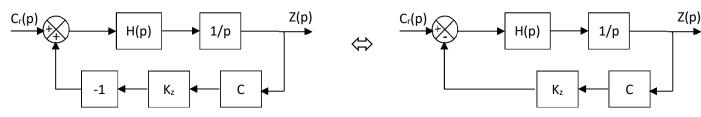
D'après la relation de Black, $H_p(p) = \frac{D(p)}{1 + D(p)R(p)}$ avec $D(p) = \frac{CK_zK}{p(1 + \tau p)}$ et R(p) = 1 (retour unitaire)

Soit donc
$$H_p(p) = \frac{C K_z K}{p (1 + \tau p) + C K_z K}$$
 et sous forme canonique $H_p(p) = \frac{1}{1 + \frac{1}{C K_z K} p + \frac{\tau}{C K_z K} p^2}$.

Par identification,
$$K_p = 1$$
, $\omega_p = \sqrt{\frac{C K_z K}{\tau}}$ et $\xi_p = \frac{1}{2\sqrt{\tau C K_z K}}$.

Q12. Expression de H_r(p) et ses caractéristiques :

En considérant $Z_c(p) = 0$, le schéma bloc devient :



D'où
$$H_r(p) = \frac{H(p) \cdot \frac{1}{p}}{1 + H(p) \frac{1}{n} K_z C}$$
 soit $H_r(p) = \frac{K}{p(1 + \tau p) + K K_z C}$

$$\text{soit} \boxed{ H_r(p) = \frac{\frac{1}{C\,K_z}}{1 + \frac{1}{C\,K_z\,K}p + \frac{\tau}{C\,K_z\,K}p^2}}, \text{ et donc} \boxed{ K_r = \frac{1}{C\,K_z}}, \omega_r = \omega_p \end{bmatrix} \text{ et } \boxed{ \xi_r = \xi_p}.$$

Q13. Définition de l'erreur dans le domaine temporel et dans le domaine de Laplace :

$$e_r(t) = z_c(t) - z(t) \xrightarrow{L} E_r(p) = Z_c(p) - Z(p) = Z_c(p) - \frac{\left[K_p.Z_c(p) + K_r.C_r(p)\right]}{1 + \frac{2\xi}{\omega_0}p + \frac{1}{\omega_0^2}p^2}$$

Q14. Erreur statique ε_s en mode poursuite :

En mode poursuite, C_r = 0 donc $E_r(p) = Z_c(p) - \frac{K_p.Z_c(p)}{1+\frac{2\xi}{\omega_0}p+\frac{1}{\omega_0^2}p^2}$

On cherche l'erreur statique, c'est à dire l'erreur en RP pour une consigne $z_c(t)$ de type échelon. Soit $Z_c(p) = \frac{Z_{c0}}{p}$.

D'après le TVF,
$$\varepsilon_s = \lim_{t \to +\infty} e_r(t) = \lim_{p \to 0} \left[p.E_r(p) \right] = \lim_{p \to 0} \left[p. \left(1 - \frac{K_p}{1 + \frac{2\xi}{\omega_0} p + \frac{1}{\omega_0^2} p^2} \right) \cdot \frac{Z_{c0}}{p} \right] = Z_{c0} (1 - K_p)$$
Or $K_p = 1$ donc $\varepsilon_s = 0$ mm

Le système est précis en mode poursuite.

Q15. Valeur limite de C pour respecter le critère de précision en mode régulation :

En mode régulation ($z_c = 0$), d'après le TVF, l'erreur statique vaut :

$$\mu_s = \lim_{p o 0} p rac{-K_r C_r(p)}{1 + rac{2\xi}{\omega_0} p + rac{1}{\omega_0^2} p^2}$$

avec
$$C_r(p) = \frac{-1}{p}$$
 (échelon) soit donc $\mu_s = K_r = \frac{1}{100C}$.

Or, le cahier des charges impose $\mu_s \le 2 \times 10^{-3} \,\mathrm{m}$ soit donc $C \ge 5$.

Q16. Valeur limite de C pour respecter le critère d'amortissement :

lci, on ne veut pas de dépassements, soit $\xi \geq 1$

Soit $C \le 1,63^2$

Finalement $C \leq 2,7$

Q17. Conclusion sur l'utilisation d'une correction proportionnelle :

Les critères de dépassement et de précision imposent des intervalles de valeurs de C disjoints, il n'est donc pas possible de trouver une valeur de C qui permette de respecter toutes les exigences du cahier des charges.

Q18. Validation des performances :

R21. Precision : OK : la sortie vaut l'entrée sans perturbation. Avec la perturbation, l'erreur est de $1\,\mathrm{mm} < 2\,\mathrm{mm}$.

Rapidité : OK | : $t_{5\%} \approx 0.05 \,\mathrm{s} < 0.1 \,\mathrm{s}$.

Dépassement : OK : il n'y a pas de dépassements.

